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It is proved by analyzing the influence of a potential barrier on the wavefunction that 
in a manner similar to the single-minimum case the eigenvalues in a double-minimum 
potential can be determined accurately on the basis of the slopes of the inward and outward 
numerical solutions, provided that the direction of integration through the barrier is 
chosen properly. It is shown how the correct direction can be determined in practice. 
As a numerical illustration a modified Cooley method is compared with the finite-difference 
boundary value method and the relative advantages of both methods are discussed. 

1. INTRODUCTION 

It is well known that for some excited states of diatomic molecules more than one 
minimum can occur in the potential energy curve. Therefore the problem of solving 
the vibrational SchrGdinger equation for bound states in a double-minimum potential 
is of practical interest in molecular physics. Recently this problem has been discussed 
by several authors [l-4] in connection with the E, FIZg+ state of the hydrogen mole- 
cule. The potential energy curve used for the discussion in [l-3] is that computed 
in [5]. The vibrational energies in this potential were also computed in [5] with the 
aid of a slightly modified Cooley method. The modification of the method was 
necessary because for some vibrational levels the original Cooley procedure [6] did 
not converge to the proper solution. It seems that these convergence difficulties 
encountered in [5] gave rise to the discussion started by Lin [ 11. 

Assuming that the difficulties reported in [5] were created by the use of the Cooley 
method, Lin [l] uses a variational method and Tobin and Hinze [2] a finite-difference 
boundary value method [7] to compute the vibrational energy levels for the E, F state 
of H, . The final results of [l] and [2] are noticeably different and they differ also 
from the original results [5]. Truhlar and Tarara [3] demonstrated numerically that 
the differences are most likely due to different boundary conditions and different 
interpolation methods used in [l], [2], and [5]. Finally, Wicke and Harris [4] em- 
ployed the three different numerical methods used in [S], [l], and [2] to compute the 
16 lowest eigenvalues for an analytically given double-minimum potential and demon- 
strated with this example that all three methods yield practically identical results. 
However, it is by no means obvious that the same holds for all double-minimum 
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potentials. The difficulties experienced in [5] with the Cooley method were caused by 
the fact that an integration of the Schrbdinger equation through the classically 
forbidden region can add to the physically interesting solution large components of 
the second, linearly independent solution of the differential equation. It is obvious 
that a large contribution of the second solution must result in a significant change of 
the slope of the resulting solution. Thus, in such a case, any method that uses the 
slopes of the inward and outward solutions for the evaluation of the corrections to the 
trial eigenvalues will fail to converge. 

For the case studied in [5] it has been found that it was always possible to choose 
the direction of integration through the classically forbidden region in such a way that 
the Cooley method converged, or in other words in such a way that the admixture of 
the nonphysical solution was small. The same method was used in [4] and again the 
procedure converged, but this does not prove its general applicability. Indeed, in the 
case of a large potential barrier one could expect a large contribution of the non- 
physical solution regardless of the direction of integration. It seems that this point 
requires clarification. 

The second important question concerns the wavefunction. Even if the numerical 
procedure converges, there still exists a possibility that the wavefunction is incorrect, 
which can result in incorrect expectation values and transition probabilities. 

The above questions are quite important for applications. Therefore we thought it 
worthwhile to study the double-minimum problem in more detail. We hoped to 
understand better the origin of the numerical difficulties and to answer-at least 
partly-the practical questions mentioned above. 

2. PROPERTIES OF THE SOLUTIONS INSIDE A POTENTIAL BARRIER 

By a suitable choice of the energy unit we can always write the radial Schrbdinger 
equation as 

3 + [A - Q(x)] Y(x) = 0. 

The solutions are subject to the boundary conditions 

Y(0) = 0, 

5-z Y(x) = 0, 
(2) 

and so we deal here with a special case of the well-known (see, e.g., [8]) Sturm- 
Liouville problem. 

To discuss some properties of arbitrary solutions of (1) we follow [8] and we introduce 
the polar representation: 

Y = r(x) cos 4(x), 

Y’ G dY/dx = r(x) sin 4(x). 
(3) 
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It can be easily shown [8] that d(x) satisfies the equation 

with 
4’ = d$/dx = -sin2 b(x) - q(x) cos2 4(x) 

q(x) = h - Q(x). 

r(x) is given as 

r(x) = r. exp + [I 7 - 4) sin 24 dx 
%I 1 

(4) 

(3 

with r,, and x0 being constants. 
Since (1) is homogeneous we will, without any loss of generality, assume 

which leads to 

r. > 0, 

r(x) > 0. (6) 

Let us now investigate the solutions of (4) inside an interval [x1 , x2] defined by 

and 
4w = 0 fori= I,2 

4(x) < 0 for x E (x1 , x2). 

It follows from (4) for x 6 (x1 , x2): 

and 
4(x) = n7r - f(x) > 0 

4(x) = n7T + 7r/2 3 d’(x) < 0. 

Hence for a given solution Y(x) there are three mutually exclusive possibilities: 

(A) There exists one and only one x E (x1 , x2) such that 

4(x) = nz-, i.e., Y’(x) = 0. 

(B) There exists one and only one x E (x1, x2) such that 

d(x) = m + r/2, i.e., Y(x) = 0. 

(7) 

(8) 

(C) Y(x) # 0 and Y’(x) # 0 for all x E (x1, x2). 

We note also that in the interval (x1, XJ both Y = 0 and Y’ = 0 correspond to a 
minimum of r(x), and there are no other extrema of r(x) in the q -=c 0 region. 
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Let us now assume that for some fixed A, Y and P = ? cos 4 are two different 
solutions of (1). Thus 4 and $ are also two different solutions of (4) and one gets [8] 

9(x> f &x>. (9) 

From (1) we have for the Wronskian 

Yp’- TY’ = const, 

or equivalently 

rF sin (4 - 4) = const. 

This leads to 

i’(x) r(x’) sin(+(x’) - 4(x’)) 
- = r(x) sin(d(x) - B(x)) T;(x’) 

Z $f# I sin($(x’) - $(x’))j. 

WV 

(11) 

WI 

Now let $ be such a solution that for x’ = a 

#(a) - d;(u) = ?7/2. 

From (12) we have 

(13) 

and we conclude: 

Cl. If Y is such that r(x) decreases in [a, b] there exists always a second solution 
P for which F(x) increases in [a, b] at least as fast as l/r(x). 

In the following we will investigate the solutions in the interval [x1 , xz] defined by 
(7). Together with a solution Y(x) we will study y(x; 8) defined by 

~(x3 = rh), 
(14) 

&Xl ; 8) = #Xl) + 6, I 6 I < 3-r. 

From (4) we get 

&c 6) - d(x) = 6 + JzI (1 - q) sin($ + 4) sin(+ - 4) dx (15) 
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and from (11) follows 

By differentiating (15) with respect to 6 one gets an integral equation for the derivative 
of & 

( ) 
* 
as 6-o = 1 - /=I (1 - q) sin 2# (g)d--o dx. 

The solution of (16) reads 

( ) 3 
a8 8=o = exp [ - Izy (1 - q) sin 24 dx] 

where in the second equality use has been made of (5). Thus for I 8 1 sufficiently small 
we can write 

A E &x2 ; 6) - &x2> N [g$l” 6. (18) 

We have also from (5) and (14): 

3x2) - = exp 
rw [ - 1” (1 - q) sin($ - 4) cos($ + 4) dx] 

51 

It is seen from (17) that in the cases A and B mentioned above, i.e., when Y or Y 
changes sign in the interval (x1, x2), a@8 and cos 24 reach their maxima simul- 
taneously. Therefore if r(x) has a deep minimum, the integral appearing in (19) may 
assume quite large values. 

Let now Y(x) (and consequently r, #) be an exact solution of the problem given by 
(1) and (2), and let, for definiteness, r(xl) < r(xz). We have then from (18) 

O<l~l<lSl. Gv 

Further let 7 (i.e., r;, $ be a numerical solution satisfying (14) and differing for 
x -C x, from the exact solution Y only in consequence of roundings. An exact integra- 
tion through the q < 0 region from x1 to x2 gives 

&x2> = d&2> + 4 
7(x,) = Cr(x,), 

w 
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where C is given by the right-hand side of (19). Thus for x > x2 Y is a numerical 
representation of the solution CY and satisfies the boundary conditions (2). It follows: 

C2. If the exact solution inside the barier, Q(x) > A, is such that for some 
x E (x1 , x,) r(x) is much less than r(xI) and r(xJ the numerical solutions are practically 
degenerate. 

Indeed, for C # 1 

and 
Y,=P-Y 

(22) 
Y,=F-CY 

both satisfy (1) and (2) and are practically orthogonal. Clearly, the exact solutions are 
not degenerate and thus we conclude: 

C3. If the conditions stated in C2 are fultiled, the problem (I), (2) has two 
close eigenvalues. 

It is worth noting that if (1) is replaced by a matrix equation as, e.g., in [7], the 
conclusions C2 and C3 follow immediately from similar theorems for the tridiagonal 
matrices [9]. 

It might be also interesting to note that C2 can be obtained directly from Cl without 
making use of the polar representation (3). For instance, if Y(x) has a minimum 
inside the barrier we get the second. increasing solution as 

2 = Y(x) 1% Y-z(t) dt 
21 

(23) 

and we can write for x N x1 

P=aY+bZ, a N 1, j b I < 1. 

For x N x2 we get from (23) 

with 

2 = CY(x) + Y(x) j’ Y-2(t) dt 
22 

C = 1” Y-z(t) dt. 
21 

Hence if Y has a deep minimum 

and 
z CT? CY(x) for x N xp 

F(x) = (1 + C) Y(x). 
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Clearly, for some solutions (20) does not hold. In such a case the roles of the x < xl 
and x > x2 regions should be interchanged; i.e., P should be taken as a numerical 
representation of Y for x > X, and one should integrate through the barrier from 
right to left. This leads in view of (18) to: 

C4. It is always possible to choose the direction of integration through the 
barrier in such a way that the error in the slope of the numerical solution does not 
increase. If T(XJ < T(xJ, the proper direction is from x1 to xz and vice versa. 

There are several numerical methods, as, e.g., the Cooley method [6], which 
compare the slopes of two solutions of (1) to determine the eigenvalues. With a given 
trial eigenvalue one solution F,oUt , is obtained by a numerical integration of (1) from 
x = 0 to some x, and the other solution, Y -1, , is obtained by an inward integration 
from some large x,, to x, . A comparison of the slopes of Toout and Fin at x = x, 
is then used to correct the trial eigenvalue. Hence due to C4 we can state: 

C5. If the direction of integration through the potential barrier in a double- 
minimum potential is chosen properly, the barrier does not influence the accuracy of 
the eigenvalues computed on the basis of comparing the slopes of the inward and 
outward solutions of (1). 

Here we should mention how one can find the correct direction of integration in 
practice. As is apparent from (21) it may happen that the numerical solution, y, 
decreases 

and the exact one, Y, increases 

I YbJl > I Y(Xl) I 

while crossing the barrier. Therefore the relative magnitudes of F(xl) and T(x~) 
cannot be used as a reliable criterion. However, it is clear from (21) and (18) that if 
the eigenvalues are determined from the slopes by an iterative procedure as, e.g., that 
of Cooley, the process will converge only if the barrier is crossed in the proper direc- 
tion. Thus if for a given direction of integration through the barrier the process 
converges, the resulting eigenvalue is accurate and if convergence difficulties occur 
for some eigenvalue one should simply change the direction of integration to achieve 
convergence. 

Unfortunately, even if we choose the direction of integration properly, there still 
remains the problem of the accuracy of the wavefunction. As we have seen above, if 
the function has a deep minimum inside the barrier, Y, and Yz given by (22) are 
practically two different solutions to the same eigenvalue and any linear combination 

will be also a solution. So we conclude: 

581/27/2-z 
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C6. If for a given eigenvalue practical degeneracy occurs, the wavefunction Y 
cannot be determined numerically in a unique way regardless of the numerical 
method used. 

Clearly, what we mean by a “practical degeneracy” depends on various factors, as, 
e.g., the word length in the computer and the numerical method used. In practice one 
can check whether the function is accurate or not by repeating the computations 
with either slightly modified boundary conditions or with a slightly different integra- 
tion step. If the function is sensitive to these changes it is certainly not accurate. 

Unfortunately it was not possible for us to find a criterion that would give in a 
general case a reliable estimate of the accuracy of the wavefunction. There is no 
doubt, however, that it is always essential to choose the direction of integration 
through the barrier properly. If with an accurate eigenvalue the function is determined 
stepwise in the correct direction, it may be, according to C6, inaccurate, but as is seen 
from (21) and (22) the numerical wavefunction, F, can be written as 

and 
B = c, Y(x) on one side of the barrier 

F = C,Y(x) on the other side. 

Thus if C, # C, , the function is normalized differently on both sides of the barrier 
but otherwise it is accurate. The situation is more serious if the direction of integration 
is incorrect. In such a case the numerical solution may be essentially different from 
the exact one because it may emerge from the barrier with a large error in the slope. 

3. NUMERICAL ILLUSTRATIONS AND CONCLUSIONS 

As we have demonstrated in Section 2 the most unfavorable conditions for a 
numerical integration arise when one is looking for almost degenerated eigenvalues. 
Therefore neither the potential used in [4] nor that from [5] can create serious diffi- 
culties if the direction of integration through the barrier is correct. To give an illustra- 
tion of the numerical difficulties that one may encounter we have investigated (I) 
with a symmetric potential 

Q(x) = 200 [3(x - 2)4 - 6(x - 2)’ - 11 

and with symmetric boundary value conditions: 

Y(0) = Y(4) = 0. (25) 

The lowest eigenvalues of this problem were computed by the bisection method as in 
[3,7] and independently by the Cooley method with the direction of integration 
through the barrier determined in the way described in Section 2, after C5. The 
computations were carried out on several different computers but the word length 
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TABLE I 

Eigenvalues --X, in the Potential (24) Obtained by the Bisection and Cooley Methods 

Method N\c 0 1 2 3 

800 751.5259462 751.5259452 656.7305754 656.7305748 

1600 751.5232212 751.5232204 656.7176856 656.7176850 

Bisection 3200 751.5225394 751.5225386 656.7144648 656.7144636 

Extrapolation 751.5223121 751.5223116 656.7133912 656.7133898 

Cooley 800 751.5223130 751.5223130 656.7133928 656.7133928 

was in all cases equivelent to about 15 decimal significant figures. The results are 
presented in Table I where N denotes the number of integration points with the 
integration step h = 4/N. The extrapolation of the eigenvalues obtained by the 
bisection method was performed assuming 

A, = X + ah2 

and using the results for N = 1600 and N = 3200. The convergence threshold for the 
eigenvalues was 2 x lo-’ both in the bisection and Cooley methods. It is seen that in 
accordance with the conclusion C5 even in such a pathological case one can get as 
accurate results with the Cooley method as with the bisection method. And it is worth 
mentioning that Cooley’s method is more economical in terms of computer time. 

Clearly, the exact solutions Y(X) of the problem given by (l), (24), and (25) are 
symmetric or antisymmetric with respect to x = 2: 

Y(x) = * Y(4 - x), x E [O, 21. (26) 

However, according to our discussion at the end of Section 2, the numerical solution 
y will not in general satisfy (26). Insteed we may get 

F(x) w CF(4 - x), x E P, 21 (27) 

with C # 1. For the potential (24) this is indeed the case. The constants C derived 
from functions obtained by the Cooley method are presented in the last column of 
Table II for several vibrational levels and different numbers of integration steps. In 
the third column we give the convergence threshold used in the computations. 

Obviously, due to symmetry, the direction of integration through the barrier is 
immaterial and thus the results given in Table II illustrate our conclusion C6. How- 
ever, such a degeneracy as in this example is very rare in practice and therefore it is 
rather unlikely that one should encounter any serious difficulties with the accuracy of 
the wavefunction in molecular spectroscopy. 
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TABLE II 

The Constants C as Defined by (27) Obtained with a Varying Number of Integration Points N. 

N Convergence threshold c 

800 2 x 10-B 4.3 x 104 
L’ = 0 1600 2 x 10-1 2.9 x lo3 

3200 2 x lo--’ 5.9 x 10’ 

800 2 x 10-e 2.6 x IO4 
r=l 1600 2 x 10-7 9.6 x lo3 

3200 2 x 10-T 3.6 x 10’ 

800 2 x 10-S 6.2 x lo2 
r=2 1600 2 x 10-1 7.6 x lOI \ 

3200 2 x 10-1 1.1 x 100 

In most applications we have to deal with the nonsymmetric problem (I), (2) and 
we cannot use the symmetry of the wavefunction as an accuracy test. Therefore 
whenever doubts may arise one should test the stability of the solutions by varying 
the integration step, etc. If the direction of integration is chosen properly and the 
solutions are stable, they will also be accurate. 

In the present work we used Cooley’s method, i.e., the Numerov [lo] integration 
formula, as an example of a step-by-step method for the determination of the solution 
of the differential equation (1). On the basis of Section 2 we believe that the results 
are qualitatively typical for any step-by-step method. However, it is clear from (19) 
that the magnitude of the error in the solution introduced by crossing the barrier 
depends strongly on the initial accuracy, 6, and thus on the integration method used. 

In order to compare the modified step-by-step method of Cooley with the finite 
difference boundary value method of Truhlar [7] we repeated the computations of the 
wavefunctions using the inverse iterations as in [7]. As expected, in consequence of 
the degeneracy, it was not possible to get symmetric and antisymmetric functions for 
v = 0 and L’ = I, respectively, without assuming the symmetry a priori. In this 
method the solutions depend on the initial symmetry of the vector but not on the 
direction of integration. However, this does not contradict our conclusions since the 
inverse iteration [9] is not a step-by-step method. 

We did also some test computations of the wavefunctions corresponding to the 
lowest eigenvalues in the more realistic E, F-state potential of Hz . The potential was 
interpolated at intervals dx = 0.01 for 0 < x < 12 from the data of [5] by the method 
given in [I 13. Thus we used 1200 integration points in both methods. It has been 
found that, e.g., for the lowest v = 0 eigenvalue both methods yielded the same 
positions (x = 1.96 and x = 4.28) of the two maxima of the wavefunction. For the 
relative height of the maxima, Y(1.96)/Y(4.28), the inverse iteration yielded 1471 as 
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compared with 1474 obtained with the Cooley method. So, even without extra- 
polating to a vanishing integration step, the eigenfunctions are quite similar in both 
methods. 

We hope to have demonstrated that the modified Cooley method can be used 
successfully for any double-minimum potential in (1). We believe that in such a case 
it is superior to the bisection method as used in [7] because it seems to be faster if 
high accuracy is required. Also in molecular applications the bisection method is not 
well suited for eigenvalues close to the dissociation limit since in such cases the 
replacement of the condition (2) by 

can lead to significant overestimates of the energies. For instance, for the hydrogen 
molecule E, F-state potential, computed in [5], the D = 29 vibrational level of H, is 
shifted up by 55 cm-l if rather than (2) one assumes (28) with xmaX = 12 atomic 
units. 

It should be noted, however, that if the potential has more than two minima, 
separated by high barriers, step-by-step methods may fail to converge and in such a 
case the method developed in [7] is superior to other methods because it is accurate 
and can be used without any changes for any reasonably well-behaved potential. 

ACKNOWLEDGMENT 

This work was supported in part by the Polish Academy of Sciences under Project 06.1.1. 

REFERENCES 

1. C. S. LIN, J. Chem. Phys. 60 (1974), 4660. 
2. F. L. TOBIN AND J. HINZE, J. Chem. Phys. 63 (1976), 1034. 
3. D. G. TRUHLAR AND W. D. TARARA, J. Chem. Phys. 64 (1976), 237. 
4. B. G. WICKE AND D. 0. HARRIS, J. Chem. Phys. 64 (1976), 5236. 
5. W. Kots AND L. WOLNIEWICZ, J. Chem. Phys. 50 (1969), 3228. 
6. J. W. COOLEY, Math. Comp. 15 (1961), 363. 
7. D. G. TRUHLAR, J. Comp. Phys. 10 (1972), 123. 
8. H. SAGAN, “Boundary and Eigenvalue Problems in Mathematical Physics,” Wiley, New York/ 

London, 1963. 
9. J. H. WILKINSON, “The Algebraic Eigenvalue Problem,” Oxford Univ. Press, London, 1965. 

10. B. NUMEROV, PubI. Ubs. Cent. Astrophys. Russ. 2 (1933), 188. 
11. L. WOLNIEWICZ, J. Chem. Phys. 45 (1966), 515. 


